Enzymatic conversion of dihydroneopterin triphosphate to the pyrimidodiazepine intermediate involved in the biosynthesis of the drosopterins in Drosophila melanogaster.

نویسندگان

  • G J Wiederrecht
  • D R Paton
  • G M Brown
چکیده

The compound 2-amino-4-oxo-6-acetyl-7,8-dihydro-3H,9H-pyrimido[4,5-b]-[1,4]diazepine (pyrimidodiazepine or PDA, for short) is a precursor of the red eye pigments called the drosopterins in Drosophila melanogaster. The precursor of PDA is 2-amino-4-oxo-6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydrop teridine triphosphate (dihydroneopterin triphosphate or H2-NTP). The synthesis of of PDA from H2-NTP requires reduced glutathione, another thiol such as 2-mercaptoethanol, Mg2+, and at least three enzymes: one that is missing in the eye color mutant, sepia; one that is present only in limited quantities in the mutant, clot; and a third one that has been described as sepiapterin synthase A. The last enzyme is present only in relatively small quantities in the mutant, purple. Because PDA is two electrons more reduced than H2-NTP, it would appear that the reducing power needed for this transformation is probably supplied by glutathione. Oxidized glutathione cannot replace reduced glutathione in the system. The yield of PDA produced enzymatically from H2-NTP can be as high as 40% under optimal conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymatic Conversion of Dihydroneopterin Triphosphate to the Pyrimidodiazepine Intermediate Involved in the Biosynthesis

The compound 2-amino-4-0~0-6-acety1-7,8-dihydro-3H,9H-pyrimido[4,5-b]-[1,4]diazepine (pyrimidodiazepine or PDA, for short) is a precursor of the red eye pigments called the drosopterins in Drosophila melanogaster. The precursor of PDA is 2-amino-4oxo-6-(~-erythro-l’,2‘,3’-trihydroxypropyl)-7,8-dihydropteridine triphosphate (dihydroneopterin triphosphate or Hz-NTP). The synthesis of of PDA from ...

متن کامل

Purification and properties of the enzymes from Drosophila melanogaster that catalyze the conversion of dihydroneopterin triphosphate to the pyrimidodiazepine precursor of the drosopterins.

The enzyme system responsible for the conversion of 2-amino-4-oxo-6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihyd roptridine triphosphate (dihydroneopterin triphosphate or H2-NTP) to 2-amino-4-oxo-6-acetyl-7,8-dihydro-3H,9H-pyrimido[4,5-b]-[1,4]diazepine (pyrimidodiazepine or PDA), a precursor to the red eye pigments, he drosopterins, has been purified from the heads of Drosophila melanogaste...

متن کامل

The enzymatic conversion of dihydroneopterin triphosphate to tripolyphosphate and 6-pyruvoyl-tetrahydropterin, an intermediate in the biosynthesis of other pterins in Drosophila melanogaster.

The enzyme, previously called "sepiapterin synthase A," has been purified by approximately 700-fold from the heads of Drosophila melanogaster. This enzyme catalyzes the Mg2+-dependent conversion of 2-amino-4-oxo-6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydrop teridine triphosphate (dihydroneopterin triphosphate or H2-NTP) to two products, one of which we have identified as tripolyphosphate...

متن کامل

The isolation and identification of an intermediate involved in the biosynthesis of drosopterin in Drosophila melanogaster.

A compound that is involved in the biosynthesis of the drosopterin eye pigments has been isolated from the heads of Drosophila melanogaster. Analyses of this compound by chemical, mass spectral, and proton nuclear magnetic resonance techniques in conjunction with biochemical considerations provide evidence for the structure 2-amino-4-oxo-6-acetyl-7,8-dihydro-3H,9H-pyrimido[4,5-b][1,4]diazepine ...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 259 4  شماره 

صفحات  -

تاریخ انتشار 1984